an 2 00 1 Immersed Submanifold and Restricted Dirac Equations : Generalized Weierstrass Relation for a submanifold

نویسنده

  • Shigeki Matsutani
چکیده

Using the submanifold quantum mechanical scheme, the restricted Dirac operator in a submanifold is defined. Then it is shown that the zero mode of the Dirac operator expresses the local properties of the submanifold, such as the Frenet-Serret and generalized Weierstrass relations. In other words this article gives a representation of a further generalized Weierstrass relations for a general k-spin manifolds immersed in n-dimensional euclidean space (0 < k < n). §

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

J an 2 00 1 Immersed Submanifold and Restricted Dirac Equations : Generalized Weierstrass Relation for a submanifold

Using the submanifold quantum mechanical scheme, the restricted Dirac operator in a submanifold is defined. Then it is shown that the zero mode of the Dirac operator expresses the local properties of the submanifold, such as the Frenet-Serret and generalized Weierstrass relations. In other words this article gives a representation of a further generalized Weierstrass relations for a general k-s...

متن کامل

1 Immersed Submanifold and Restricted Dirac Equations : Generalized Weierstrass Relation for a submanifold

Using the submanifold quantum mechanical scheme, the restricted Dirac operator in a submanifold is defined. Then it is shown that the zero mode of the Dirac operator expresses the local properties of the submanifold, such as the Frenet-Serret and generalized Weierstrass relations. In other words this article gives a representation of a further generalized Weierstrass relations for a general k-s...

متن کامل

Submanifold Differential Operators in D-Module Theory II: Generalized Weierstrass and Frenet-Serret Relations as Dirac Equations

This article is one of squeal papers. For this decade, I have been studying the Dirac operator on a submanifold as a restriction of the Dirac operator in E n to a surface or a space curve as physical models. These Dirac operators are identified with operators of the Frenet-Serret relation for a space curve case and of the generalized Weierstrass relation for a conformal surface case and complet...

متن کامل

Submanifold Differential Operators in D-Module Theory II: Generalized Weierstrass and Frenet-Serret Relations as Dirac Equations

This article is one of squeal papers. For this decade, the Dirac operator on a submanifold has been studied as a restriction of the Dirac operator in E n to a surface or a space curve as physical models. These Dirac operators are identified with operators of the Frenet-Serret relation for a space curve case and of the generalized Weierstrass relation for a conformal surface case and completely ...

متن کامل

Submanifold Dirac operators with torsion

The submanifold Dirac operator has been studied for this decade, which is closely related to Frenet-Serret and generalized Weierstrass relations. In this article, we will give a submanifold Dirac operator defined over a surface immersed in E4 with U(1)-gauge field as torsion in the sense of the Frenet-Serret relation, which also has data of immersion of the surface in E4. Mathematics Subject Cl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001